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ABSTRACT 
 
A 2 kW Brayton Power Conversion Unit (PCU) and a xenon ion thruster were integrated with a Power Management 
and Distribution (PMAD) system as part of a Nuclear Electric Propulsion (NEP) Testbed at NASA’s Glenn 
Research Center.  Brayton converters and ion thrusters are potential candidates for use on future high power NEP 
missions such as the proposed Jupiter Icy Moons Orbiter (JIMO).  The use of existing lower power test hardware 
provided a cost-effective means to investigate the critical electrical interface between the power conversion system 
and ion propulsion system.  The testing successfully demonstrated compatible electrical operations between the 
converter and the thruster, including end-to-end electric power throughput, high efficiency AC to DC conversion, 
and thruster recycle fault protection.  The details of this demonstration are reported herein. 

INTRODUCTION 

Nuclear Electric Propulsion (NEP) has been identified as an enabling technology for future NASA space science 
missions, such as the Jupiter Icy Moons Orbiter (JIMO) now under study.  NEP provides various potential mission 
benefits including large payload mass fractions, the ability to visit multiple mission targets with a single spacecraft, 
high power and long duration in-situ science investigations, and high data-rate communications.  An important 
element of the NEP spacecraft is the power conversion system, which converts the reactor heat to electrical power 
for use by the ion propulsion system and other spacecraft loads.  The electrical integration of the power converter 
and ion thruster represents a key technical challenge in establishing NEP technology feasibility. 

This technical hurdle was extensively addressed on December 1, 2003 when a closed Brayton cycle Power 
Conversion Unit (PCU) was tested with a gridded ion thruster at NASA’s Glenn Research Center (GRC).  The test 
demonstrated end-to-end power throughput, and marked the first-ever coupling of a Brayton turbo-alternator and a 
gridded ion thruster, both of which are candidates for use on JIMO-type missions (Mason, 2003).  The testing was 
conducted at Glenn’s Vacuum Facility #6 (VF6) where the Brayton unit was installed in the 3-meter diameter 
vacuum test port and the ion thruster was installed in the 7.6 m diameter main chamber as shown in Figure 1. 

The Brayton test unit was a fully integrated power conversion system including turbo-alternator, recuperator, and 
gas cooler with Helium-Xenon (HeXe) working fluid designed for operation up to 2 kW (Hervol, 2003).  The heat 
source used in the test was a series of silicon-carbide electrical resistance heaters contained in a shell and tube heat 
exchanger that heated the HeXe gas to over 1000 K, simulating a fission reactor source.  A commercial chiller with 
a pumped ethylene glycol cooling loop provided waste heat rejection, simulating a space radiator system.  The 
Brayton PCU is shown in Figure 2. 
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The ion thruster used in the test was an Engineering Model (EM) of the NASA Solar Electric Propulsion 
Technology Application Readiness (NSTAR) gridded ion thruster used successfully as the main propulsion system 
on the NASA Deep Space 1 Mission in 1998 (Brophy, 2002).  The NSTAR thruster is rated for operation up to 
2.3 kW, providing 92 milli-newtons thrust and 3100 seconds specific impulse using xenon propellant.  The EM 
NSTAR thruster, installed in VF6�s main chamber, is shown in Figure 3. 

 

 

 

FIGURE 1. GRC Vacuum Facility #6 

 

 

FIGURE 2. Brayton Power Conversion Unit 

 

FIGURE 3. NSTAR Engineering Model Thruster 

 

The use of existing low-power test hardware provided a cost-effective and expeditious means to examine the critical 
electrical interface between the converter and thruster. The similarity in power rating between the Brayton and the 
NSTAR made for a natural pairing.  While this test was limited in power to the 2 kW-class, the power management 
techniques are applicable to the higher power levels projected for NEP.  For the test, the Brayton PCU was operated 
at 1.6 kW AC electrical output and 53000 rpm.  The NSTAR thruster was operated at various power levels between 
0.7 and 1.7 kW.  The Brayton system provided power directly to the thruster beam supply, up to 1.4 kW, while the 
remainder of the thruster loads were satisfied by laboratory power supplies. 

Main 
Chamber

3-meter 
Test Port

Brayton 
Unit
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The Brayton alternator power was routed through a fully representative Power Management & Distribution (PMAD) 
system, designed and built in-house at GRC.  The PMAD converted the 55 volt (RMS, line-to-neutral), 3-Phase AC 
alternator output to 1100 volts-DC for use by the thruster beam supply. The AC to DC conversion was accomplished 
using a transformer-rectifier-filter approach.  This same approach is being studied for possible implementation in the 
ion thruster Power Processing Units under study within the JIMO project. The PMAD system also provided Brayton 
speed and voltage control via a Parasitic Load Radiator (PLR), designed to maintain a constant load on the alternator 
regardless of thruster demand. High speed load transfer between the PLR and the thruster beam supply provided 
fault protection during thruster recycles. Recycles are intermittent and unpredictable electrical transients that occur 
with ion thrusters resulting in a momentary short circuit condition. If not properly managed, thruster recycles could 
cause harmful effects to the thruster grids, PMAD, and/or the Brayton rotating equipment. The testing verified that a 
recycle could be detected, power switched from the beam supply within several milli-seconds (msec), and power 
switched back to the beam supply in less than a second, all while maintaining the thruster in operating mode. 

The successful completion of this test provides the following important advances in NEP technology development: 

• Demonstrated end-to-end electric power throughput from a Brayton power conversion unit to an ion 
thruster in a representative vacuum environment. 

• Demonstrated high efficiency, AC to DC conversion using a radiation tolerant transformer/rectifier/filter 
design approach that is applicable to JIMO-class Power Processing Units. 

• Demonstrated thruster recycle fault protection using high speed load transfer from the beam supply to a 
parasitic load radiator without adverse energy deposition on the thruster grids or harmful transients on the 
Brayton rotor.  

TEST CONFIGURATION 

The overall test schematic is shown in Figure 4. The Brayton PCU is installed in the 3-meter test port and the 
NSTAR thruster is installed in the main chamber at VF6.  During the test, the test port was operated at rough 
vacuum (~1×10–3 torr) and was isolated from the main chamber by a 3-meter gate valve. The rough vacuum 
provides a suitable environment for the multi-foil insulation (MFI) used on the hot-surfaces of the Brayton unit to 
minimize heat leakage.  The main chamber was operated at hard vacuum (~1×10–6 torr) as required for operation of 
the thruster. 

Both the Brayton and NSTAR thruster utilize external electronic racks for power, control, and data acquisition.  The 
three Brayton electronic racks are pictured in Figure 5.  The PMAD console (left-most rack in Figure 5) includes a 
startup power supply for the Brayton alternator, speed and voltage control electronics, high voltage converter stage, 
and an air-cooled PLR.  The PMAD console also supplies the high voltage power feed to the NSTAR power supply 
rack, which distributes the power to the thruster.  A logic control circuit between the Brayton PMAD and NSTAR 
power console provides a high voltage safety disconnect.  The electrical design is discussed in further detail in a the 
POWER MANAGEMENT AND DISTRIBUTION section. 

The Brayton power supply console (right-most rack in Figure 5) includes the operator controls for the gas heater and 
commercial chiller.  The Brayton working fluid is heated by three silicon-carbide resistive elements in series that are 
inserted into a shell and tube heat exchanger.  The heating elements do not come into contact with the working fluid 
and heat the inner surface of the gas heater exclusively by radiation.  The heater has a dedicated 480 volt power 
supply that utilizes an industrial style Proportional-Integral-Derivative controller providing constant power to the 
resistive elements as specified by the test operator. The chiller, located in the test facility basement, uses a 
50 percent ethylene glycol 50 percent water mixture. The chiller provides coolant flow rates of approximately 
3 gallons per minute at a controlled supply temperature of 273 K for heat loads up to 4.5 kWt. 

Test data is acquired using a commercial data logger connected to a desktop computer contained in the data 
acquisition rack (center rack in Figure 5).  The data acquisition software performs real time calculations of PCU heat 
input and heat rejection, cycle efficiency, compressor and turbine efficiencies, recuperator effectiveness and mass 
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flow rate.  A representative data screen print showing all pressures, temperatures, power levels, voltages, currents, 
flow rates, and calculated values, is shown in Figure 6.  Test data was concurrently saved to data files for post 
processing. 

 

 

FIGURE 4. Brayton/NSTAR Test Schematic 

 

FIGURE 5. Brayton Electronic Racks 

 

 

FIGURE 6. Brayton Data Acquisition Screen 

The NSTAR power console provides power for the various thruster loads.  In addition to the beam supply load 
which is satisfied via the Brayton PMAD, the NSTAR thruster requires power for the accelerator grid, discharge 
cathode, and neutralizer cathode during steady-state operation and for the neutralizer heater during startup.  NSTAR 
data acquisition is accomplished with digital multi-meters for steady-state voltages and currents, and a digital 
oscilloscope to capture high speed electrical transients. 

POWER MANAGEMENT AND DISTRIBUTION (PMAD) 

The PMAD electrical control system performs the functions of PCU startup, alternator output voltage and rotor 
speed control, and converts the low voltage AC output of the alternator to 1100 volts-DC as required for the NSTAR 
beam supply.  The control system operates autonomously except for operator commands to begin motor starting and 
enable the high voltage output.  A DC power supply simulating a battery provides electrical input to the motor start 
inverter for startup motoring.  The PMAD control system also provides redundant over-speed shutdown protection 
for the turboalternator. 

PMAD Data Power 
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The Brayton PCU includes a 3-phase permanent magnet alternator that produces an output voltage proportional to 
the alternator speed, and inversely proportional to the applied load (Mason, 1997).  The output voltage is 
approximately 55 volts-AC (RMS, line-to-neutral), which can be rectified with a 3-phase full wave bridge to provide 
120 volts-DC. The electrical load on the alternator is controlled to regulate the rotational speed.  If the load torque is 
equal to the torque supplied by the rotor, the speed will be constant.  Increasing the alternator loading decreases the 
speed, and decreasing the alternator loading increases the speed.  This technique is called parasitic load speed 
control.  The amount of parasitic load applied to the machine is controlled, based on the speed and voltage set points 
specified by the test operator.  The power in the parasitic load is then dissipated as waste heat using an air cooling 
system.  The PMAD overall block diagram is shown in Figure 7. 

 

 

FIGURE 7. Overall PMAD Block Diagram 

The conversion to high voltage DC for the ion thruster beam power supply is accomplished with a transformer � 
rectifier � filter (TRF) set as shown in Figure 8, followed by a voltage regulation stage. The TRF approach provides 
a high efficiency, radiation tolerant solution to the high voltage DC converter requirement.  The use of the 
transformer greatly reduces the number of radiation sensitive semi-conductor devices typically associated with DC-
DC converters, while providing higher efficiency.  The Brayton PMAD system is designed for autonomous load 
sharing between the PLR and the thruster load.  If the thruster load is turned-off or experiences a momentary 
electrical transient, the PLR automatically compensates by adding resistive load to maintain a constant overall load 
on the alternator.  A Remote Power Controller (RPC) at the TRF provides a shutoff relay on the high voltage DC 
thruster load to accommodate on/off cycles.  The TRF assembly in the PMAD rack is shown in Figure 9.  

 

 

FIGURE 8. Transformer Rectifier Filter (TRF) Schematic 

 

FIGURE 9. TRF Board in PMAD Rack 
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TEST APPROACH 

The integrated test of the Brayton PCU and NSTAR thruster was preceded by several functional checkout tests to 
assure electrical compatibility and verify stable operation.  The checkout testing was performed in a progressive 
manner with each test providing a higher fidelity simulation of the actual hardware.  First, the Brayton PMAD 
system was thoroughly exercised with an Alternator Test Rig (ATR), which simulated the Brayton alternator using 
an air turbine drive source.  The ATR and PMAD were then tested with an ion thruster resistive load bank, during 
which power variations and thruster recycles were evaluated. 

This phase of testing revealed that the switching between the Brayton PMAD and the thruster power controller was 
causing unacceptable charge transfer to the thruster load bank, during simulated thruster recycles.  High speed data 
traces indicated that the Brayton PMAD was transferring an average of 6 amps over about 12 msec or about 
72 milli-coulombs (mC).  Recent findings indicate that excessive charge transfer during a thruster recycle could 
potentially cause electrode grid damage and degrade thruster performance and life. The present charge transfer limit 
for the molybdenum grids used on the EM NSTAR thruster is estimated at 9 mC.  As a solution, a high speed Field 
Effect Transistor (FET) switch was placed in series with the shutoff relay in the Brayton PMAD system.  This 
reduced the large shutdown transient time to less than 250 micro-seconds and the charge transfer to about 4 mC.  
The thruster recycle transient and Brayton system response is described in more detail in the TEST RESULTS 
section. 

After the performance of the new switch was verified, the PMAD rack was successfully operated with the Brayton 
PCU at the design conditions planned for the NSTAR test.  The Brayton PCU was disconnected, replaced by the 
ATR, and the PMAD output was connected to the thruster via the NSTAR power rack.  Testing was performed at 
thruster power levels identical to those used previously with the load bank simulator and the testing indicated that 
the new FET switch was sufficient to limit the charge transfer to an acceptable level during thruster recycles. 

Finally, the Brayton PCU was connected to the PMAD system and NSTAR thruster for the actual integrated system 
test.  The test plan called for NSTAR thruster operation at three initial power settings (test points 1, 2, 3) and three 
optional power settings (test points 4, 5, 6) as outlined in Table 1.  The optional test points were to be acquired only 
if the first three points were achieved without difficulty.  These test point settings were obtained from the NSTAR 
Flight Throttling Table and correspond to pre-determined propellant flow, beam current, and beam voltage settings. 
In Table 1, thruster power represents the total electrical power required by the thruster including beam supply and 
auxiliary thruster loads.  Beam power is the product of beam voltage and beam current, and accounts for about 
80 percent of the total thruster power.  

 
TABLE 1. Brayton/NSTAR Test Power Levels 

Test Point NSTAR 
Throttle Level 

Thruster 
Power (kW) 

Beam Voltage 
(VDC) 

Beam Current 
(amps) 

Beam Power 
(kW) 

1 TH2 0.74 1100 0.52 0.57 

2 TH6 1.22 1100 0.91 1.00 

3 TH10 1.70 1100 1.30 1.43 

4 TH8 1.46 1100 1.10 1.21 

5 TH7 1.34 1100 1.00 1.10 

6 TH3 0.86 1100 0.61 0.67 

 

TEST RESULTS 

The integrated system test was conducted on December 1, 2003 during which the NSTAR thruster was successfully 
operated at all six test points from Table 1. The majority of the testing was performed with the Brayton PCU at a 
power level of 1.6 kW and rotor speed of 53000 rpm (883 Hz). The corresponding turbine inlet and compressor inlet 
temperatures were 1020 and 290 K, respectively. Thermal-to-electric efficiency was approximately 22 percent.  
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Previous testing of this unit, in its current heat source and chiller configuration, has resulted in 1.8 kW power output 
and 24 percent thermal-to-electric efficiency at a turbine inlet temperature of 1070 K and a compressor inlet 
temperature of 280 K (Hervol, 2003). 

The maximum NSTAR operating power was 1.7 kW (TH10), with approximately 1.4 kW supplied by the Brayton 
system to the beam supply. At this operating point, the PMAD efficiency was about 91 percent based on total losses 
associated with the high voltage TRF stage and the PLR stage.  The majority of the power loss (~6 percent) was due 
to core loss in the high voltage transformer.  The excessive core loss fraction was a consequence of using a readily 
available commercial transformer that was not optimized for this application.  Efficiency improvements in the TRF 
stage are anticipated at JIMO-class power levels using optimized components. 

Stable thruster operation at all six power levels was demonstrated.  Steady-state operation was maintained for a 
minimum of 30 minutes at each test point.  While in steady-state operating mode, the thruster was subjected to a 
number of operator induced recycles by placing a metallic rod with an insulated grip between the beam and 
accelerator circuits, thereby creating a momentary short-circuit condition.  This procedure simulates a “natural” 
recycle that occurs intermittently and unpredictably with ion thrusters.  The recycle transient was considered the 
greatest challenge in achieving a successful system demonstration.  The recycle simulation produced no adverse 
effects on either the NSTAR thruster or the Brayton unit.  Several “natural” recycles also occurred during the test 
period without incident. 

Figure 10 shows the beam voltage and current during an induced NSTAR recycle at the TH10 operating point.  The 
voltage drops off in microseconds while the current drops off in about 0.06 seconds.  The initial current spike at the 
moment of the voltage drop-off is the primary concern for causing thruster grid damage.  The beam current that 
follows the initial spike is the result of residual current transfer from the accelerator circuit, and not attributed to the 
Brayton PMAD performance.  Beam voltage is restored in about 0.8 seconds and the thruster is returned to pre-
recycle operation in less than 1.3 seconds. 

 

 

FIGURE 10. Beam Voltage and Current During Simulated Thruster Recycle at TH10 Operating Point 

 

Figure 11 shows the beam voltage and current for the first 100 msec after the induced recycle on TH10.  The current 
spikes to 16 amps over 250 micro-seconds then drops to 5 amps for 4 msec before the NSTAR recycle logic circuit 
commands the beam current off.  The charge transfer directly attributed to the high voltage Brayton PMAD is 4 mC.  
The total charge transfer with the additional 4 msec NSTAR command logic delay is about 24 mC.  The 4 msec 
delay could be reduced with faster control commands from the NSTAR power console.  The residual accelerator 
current remains on the beam circuit for 60 msec.  This accelerator current transfer is the result of a combination of 
factors including the NSTAR recycle control circuit, the accelerator power supply characteristics, and the use of the 
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shorting-rod between the beam and accelerator circuits as required to initiate the recycle.  This phenomenon would 
not occur during a “natural” recycle. 

Figure 12 shows the Brayton alternator response to the same recycle.  During the recycle, the alternator experiences 
4 cycles at a high current, low voltage condition before the charge transfer transient is complete and nominal 
operation is restored with the PLR absorbing the full alternator load.  The 4 msec alternator transient directly 
corresponds to the NSTAR logic command delay.  Following the recycle, the alternator and Brayton converter 
exhibited no adverse effects or performance degradation. 

 

 

FIGURE 11. Beam Voltage and Current for First 100 msec 
Following Recycle 

 

FIGURE 12. Alternator Output During Induced Thruster 
Recycle 

 

The Brayton PMAD system provided steady-state power with voltage ripple of less than 1 percent peak-to-peak and 
negligible current ripple as shown in Figure 13.  The voltage ripple indicates a characteristic frequency of 5 kHz as a 
result of the 3-phase full wave rectification of the 883 Hz alternator output.  For comparison, Figure 14 shows the 
ripple trace for the laboratory DC beam power supply in the NSTAR power console.  While the peak-to-peak ripple 
is similar, a higher characteristic frequency (~15 kHz) results from the switching frequency of the power supply’s 
DC-DC converter.  Both the Brayton PMAD system and the laboratory power supply easily meet the NSTAR beam 
power specification of less than 5 percent voltage ripple. 

 
 

 

FIGURE 13. Current and Voltage Ripple with the Brayton 
Alternator 

 

FIGURE 14. Current and Voltage Ripple with a 
Laboratory DC Power Supply 
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CONCLUSION 

The successful completion of this test demonstrated the end-to-end electrical throughput from a Brayton power 
conversion unit to an ion thruster, and marked the first-ever coupling of a Brayton turbo-alternator to an ion thruster 
beam supply.  It further demonstrated the use of high efficiency AC to DC conversion using a 
transformer/rectifier/filter design approach that is applicable to future JIMO-class AC Power Processing Units.  Ion 
thruster recycle fault protection was demonstrated using high speed load switching without adverse energy 
deposition on the thruster grids or harmful transients on the Brayton rotor.  The use of existing equipment for the 
Brayton unit and ion thruster provided a cost-effective approach to addressing the critical electrical interface 
between the power conversion unit and the electric propulsion system.  While this test was limited in power to the 
2 kW-class, the power conversion system and power management techniques are applicable to the higher power 
levels anticipated for NEP.   
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